Tutorial

This tutorial is also available as jupyter and org-mode notebook.

Quick start

Berni provides a database of interaction models and trajectory samples to quickly start molecular dynamics or Monte Carlo simulations. The focus is on simple models to study liquids and glasses. The package strives to follow FAIR-data practises.

The package provides an API to browse and retrieve models and samples:

  1. models: database of all available models

  2. models.get("lennard_jones"): get a specific model by its qualified name

  3. samples: database all available samples

  4. samples.get("lennard_jones-13ce47602b259f7802e89e23ffd57f19.xyz"): get a copy of a sample by its qualified name

Both models and samples are slightly customized TinyDB databases, which you can query using the TinyDB methods.

The interaction models can be exported in formats suitable for simulation with a range of backends, such as atooms, RUMD, and LAMMPS.

Interaction models

Let’s see how to browse the models database.

Available models

The metadata of the available models can browsed by iterating over berni.models

import berni

for model in berni.models:
    print(model['name'])
bernu_hiwatari_hansen_pastore
coslovich_pastore
dellavalle_gazzillo_frattini_pastore
gaussian_core
grigera_cavagna_giardina_parisi
harmonic_spheres
kob_andersen
kob_andersen_2
lennard_jones
roux_barrat_hansen
roy_heyde_heuer-II
roy_heyde_heuer
wahnstrom

These are the fields (or columns) of the database

berni.models.fields()
['_model', 'description', 'doi', 'name', 'notes', 'reference']

You can pretty print the database like this

berni.models.pprint(['name', 'description'])
name                                 description
--------------------------------------------------------------------------------------------------------
bernu_hiwatari_hansen_pastore        Binary soft-sphere mixture with size ratio of 1.4
coslovich_pastore                    Short-ranged pairwise-additive model for silica
dellavalle_gazzillo_frattini_pastore Binary Lennard-Jones mixture model for NiY alloys
gaussian_core                        One-component Gaussian core model with long-range cutoff
grigera_cavagna_giardina_parisi      Binary soft-sphere mixture with size ratio of 1.2 and smooth cutoff
harmonic_spheres                     Binary mixture of harmonic spheres with size ratio of 1.4
kob_andersen                         Binary Kob-Andersen Lennard-Jones mixture
kob_andersen_2                       Ternary Kob-Andersen Lennard-Jones mixture
lennard_jones                        One-component Lennard-Jones model
roux_barrat_hansen                   Binary soft-sphere mixture with size ratio of 1.2
roy_heyde_heuer-II                   variant of roy_heyde_heuer with optimized parameters
roy_heyde_heuer                      2d model of a silica bilayer
wahnstrom                            Binary Lennard-Jones mixture with size ratio of 1.2

Since berni.models inherits from TinyDB, you can use all the TinyDB methods to browse and search the database, see the TinyDB docs.

The name field is a readable but “fully qualified” name that you can use to retrieve the specifications of the interaction model

Get the one-component Lennard-Jones model and inspect the parameters

model = berni.models.get('lennard_jones')
pprint(berni.models.get("lennard_jones"))
{'cutoff': [{'parameters': {'rcut': [[2.5]]}, 'type': 'cut_shift'}],
 'potential': [{'parameters': {'epsilon': [[1.0]], 'sigma': [[1.0]]},
                'type': 'lennard_jones'}]}

The model specifications are in a dict / json format, with two possibile schemas (1 and 2). The default schema requires the potential and cutoff fields. Additional fields are stored in the metadata field, but are not returned by the get method.

Here is how the default schema looks like

pprint(berni.schemas[1])
{'$schema': 'https://json-schema.org/draft/2020-12/schema',
 'properties': {'cutoff': {'items': {'properties': {'parameters': {'type': 'object'},
                                                    'type': {'type': 'string'}},
                                     'required': ['type', 'parameters'],
                                     'type': 'object'},
                           'type': 'array'},
                'metadata': {'properties': {'doi': {'type': 'string'},
                                            'name': {'type': 'string'},
                                            'notes': {'type': 'string'},
                                            'reference': {'type': 'string'}},
                             'required': ['name'],
                             'type': 'object'},
                'potential': {'items': {'properties': {'parameters': {'type': 'object'},
                                                       'type': {'type': 'string'}},
                                        'required': ['type', 'parameters'],
                                        'type': 'object'},
                              'type': 'array'}},
 'required': ['potential', 'cutoff'],
 'type': 'object'}

Schema version 2 stores the interaction parameters by pairs of species, instead of a single array.

pprint(berni.models.get("kob_andersen", schema_version=2))
{'potential': [{'cutoff': {'parameters': {'1-1': {'rcut': 2.5},
                                          '1-2': {'rcut': 2.0},
                                          '2-2': {'rcut': 2.2}},
                           'type': 'cut_shift'},
                'parameters': {'1-1': {'epsilon': 1.0, 'sigma': 1.0},
                               '1-2': {'epsilon': 1.5, 'sigma': 0.8},
                               '2-2': {'epsilon': 0.5, 'sigma': 0.88}},
                'type': 'lennard_jones'}]}

This is useful to generate interaction potentials for some third-party backends.

To choose or build your model, we need some more details about the schema layout, so keep reading.

Potentials and cutoffs

Each model is associated to a list of interaction potentials along with their parameters. If we limit ourselves to two-body potentials, we can write

\[u_{\alpha\beta}(r) = u_{\alpha\beta}^{(1)}(r) + u_{\alpha\beta}^{(2)}(r) + \dots\]

where \(\alpha\) and \(\beta\) are chemical species in a mixture.

Turning back to the LJ model

model['potential']
[{'type': 'lennard_jones', 'parameters': {'epsilon': [[1.0]], 'sigma': [[1.0]]}}]

Notice how the epsilon and sigma parameters are both 2d arrays, as they depend on the chemical species of the interacting particles. There is a cutoff field as well, since the potentials are typically cut off at some distance.

model['cutoff']
[{'type': 'cut_shift', 'parameters': {'rcut': [[2.5]]}}]

The potentials and cutoffs have standardized names

for potential in sorted(berni.potentials):
    print(potential)
fene
gaussian
harmonic
inverse_power
lennard_jones
sum_inverse_power
yukawa

The cutoffs have standardized names and some aliases too

for cutoff in sorted(berni.cutoffs):
    print(cutoff)
cubic_spline
cut
cut_shift
linear
linear_cut_shift
quadratic
quadratic_cut_shift
shift

Trajectory samples

berni provides a database of trajectory samples to make it easy to

  • start a new simulation

  • check the implementation of interactions in third-party code

  • provide a little repository for further analysis

Each sample is associated to one the models defined above. Of course, you are free to use these samples for other interaction models.

Browsing the database

Browse the database of trajectory samples.

berni.samples.pprint(['name', 'model'], sort_by='model')
name                                                                 model
----------------------------------------------------------------------------------------------------
bernu_hiwatari_hansen_pastore-f61d7e58b9656cf9640f6e5754441930.xyz   bernu_hiwatari_hansen_pastore
coslovich_pastore-488db481cdac35e599922a26129c3e35.xyz               coslovich_pastore
grigera_cavagna_giardina_parisi-0ac97fa8c69c320e48bd1fca80855e8a.xyz grigera_cavagna_giardina_parisi
kob_andersen-8f4a9fe755e5c1966c10b50c9a53e6bf.xyz                    kob_andersen
roy_heyde_heuer-II-b8d70742799933357ea83314590d2b4d.xyz              roy_heyde_heuer-II
lennard_jones-5cc3b80bc415fa5c262e83410ca65779.xyz                   lennard_jones

Get a local copy of a Lennard-Jones fluid sample.

local_file = berni.samples.get("lennard_jones-13ce47602b259f7802e89e23ffd57f19.xyz")

By default, local_file will be stored in a temporary directory. You can use it to start a simulation, benchmarking your code or further analysis using other packages.

We rely on TinyDB to perform queries on the metadata of the available samples. For instance, here we look for samples of the Lennard-Jones models with a unit density

query = berni.Query()
samples = berni.samples.search((query.model == 'lennard_jones') &
                               (query.density == 1.0))
pprint(samples)
[{'density': 1.0,
  'format': 'xyz',
  'md5_hash': '13ce47602b259f7802e89e23ffd57f19',
  'model': 'lennard_jones',
  'name': 'lennard_jones-13ce47602b259f7802e89e23ffd57f19.xyz',
  'number_of_particles': 256,
  'potential_energy_per_particle': -3.8079776291909284,
  'url': 'https://framagit.org/coslo/berni/-/raw/master/berni/samples/lennard_jones-13ce47602b259f7802e89e23ffd57f19.xyz'},
 {'density': 1.0,
  'format': 'xyz',
  'md5_hash': '5cc3b80bc415fa5c262e83410ca65779',
  'model': 'lennard_jones',
  'name': 'lennard_jones-5cc3b80bc415fa5c262e83410ca65779.xyz',
  'number_of_particles': 108,
  'potential_energy_per_particle': 0.0,
  'temperature': 0.0}]

We can tidy up the output with pprint()

berni.samples.pprint(['name', 'density', 'number_of_particles'],
                     cond=(query.model == 'lennard_jones') & (query.density == 1.0))
name                                               density number_of_particles
------------------------------------------------------------------------------
lennard_jones-13ce47602b259f7802e89e23ffd57f19.xyz 1.0     256
lennard_jones-5cc3b80bc415fa5c262e83410ca65779.xyz 1.0     108

Here is another way to inspect the full metadata of a given sample, identified this time by the file name

query = berni.Query()
pprint(berni.samples.search(query.name == "lennard_jones-5cc3b80bc415fa5c262e83410ca65779.xyz"))
[{'density': 1.0,
  'format': 'xyz',
  'md5_hash': '5cc3b80bc415fa5c262e83410ca65779',
  'model': 'lennard_jones',
  'name': 'lennard_jones-5cc3b80bc415fa5c262e83410ca65779.xyz',
  'number_of_particles': 108,
  'potential_energy_per_particle': 0.0,
  'temperature': 0.0}]

For more advanced queries, check out what TinyDB can do!

The database may provide some provenance information via the notes optional field. We do not aim at “full reproducibility” here.

Exporting models for backends

In addition to specifying the interaction models, berni can generate potentials objects for different interaction “backends”. At present there there is support for atooms, LAMMPS and RUMD - more to come!

Atooms

The model specifications of berni are compatible with the native f90 atooms backend. Here we compute the potential energy of the configuration stored in local_file using lennard_jones model.

from atooms.backends.f90.trajectory import Trajectory
from atooms.backends.f90 import Interaction

with Trajectory(local_file) as th:
    system = th[0]

model = berni.get("lennard_jones")
system.interaction = Interaction(model)
print(system.potential_energy(per_particle=True))
-3.807977629191845

We can compare it to the reference value stored in the samples database and check they agree. This is useful if you want to test a new implementation of a backend.

query = berni.Query()
sample = berni.samples.search(query.name == "lennard_jones-13ce47602b259f7802e89e23ffd57f19.xyz")[0]
sample["potential_energy_per_particle"]
-3.8079776291909284

RUMD

In addition to the native f90 backend, there is currently support for RUMD. It is possible to generate potential objects for RUMD like this

potentials = berni.export("kob_andersen", "rumd")

The potentials list can then be passed to an Simulation instance defined in RUMD to carry out a simulation. You may want to use the atooms.rumd wrapper for that.

LAMMPS

Berni will try to export the model using the “analytical” potential functions defined in LAMMPS and fallback to tabulated potentials in all the other cases

import berni
berni.export("kob_andersen", 'lammps')
pair_style lj/cut 1.0
pair_coeff 1 1 1.0 1.0 2.5
pair_coeff 1 2 1.5 0.8 2.0
pair_coeff 2 2 0.5 0.88 2.2
pair_modify shift yes
berni.export("bernu_hiwatari_hansen_pastore", "lammps")
pair_style table spline 10000
pair_coeff 1 1 /tmp/tmpast7x_o3/phi.1-1 POTENTIAL
pair_coeff 1 2 /tmp/tmpast7x_o3/phi.1-2 POTENTIAL
pair_coeff 2 2 /tmp/tmpast7x_o3/phi.2-2 POTENTIAL

The tabulated potential files are generated automatically.